Mark Scheme (Results) January 2011

GCE

GCE Chemistry (6CH01/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/
Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

January 2011
Publications Code USO26194
All the material in this publication is copyright
© Edexcel Ltd 2011

Section A (multiple choice)

Question	Correct Answer	Mark
Number	B	$\mathbf{1}$
$\mathbf{1}$	B	
Question Correct Answer Mark Number $\mathbf{1}$ 2 C		

Question Number	Correct Answer	Mark
3	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$4(\mathrm{a})$	B	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
4 (b)	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
5	B	1

Question	Correct Answer	Mark
Number		
$6(a)$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
6 (b)	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
7 (a)	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$ (b)	A	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
$\mathbf{7}$ (c)	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$8(a)$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
8 (b)	A	1
Question Number	Correct Answer	Mark
8 (c)	D	1
Question Number	Correct Answer	Mark
9	B	1
Question Number	Correct Answer	Mark
10	D	1
Question Number	Correct Answer	Mark
11	C	1
Question Number	Correct Answer	Mark
12	C	1
Question Number	Correct Answer	Mark
13	B	1
Question Number	Correct Answer	Mark
14	B	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (a)	$\frac{\text { Average/mean mass of an atom/isotopes (1) }}{(1 / 12 \text { mass of an atom of) carbon-12 (1) }}$First mark: mention of mean or average mass of either an atom/isotopes IGNORE "weighted" before average or mean IGNORE any mention of "moles" in definition Second mark: any mention of carbon-12 IGNORE any reference to "moles" or "1 mole" at any stage IGNORE 12 g with reference to carbon-12 mean or average mass without prior mention of either an atom or isotopes Mark the two points independently	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (b) (i)	(Rubidium/it has) two isotopes		$\mathbf{1}$
	ALLOW (Rubidium/it has) "different isotopes" ALLOW abbreviations such as formulae of rubidium atoms or cations with isotopic masses		

Question Number	Acceptable Answers	Reject	Mark
15 (b) (ii)	$\begin{aligned} & \frac{85 \times 72+87 \times 28}{100}(1) \\ & =85.56 \text { or } 85.6(1) \end{aligned}$ Correct answer with no working (2) NOTE: Rounding error giving answer 85.5 scores (1) IGNORE any units (for example, $\mathrm{g} / \mathrm{g} \mathrm{mol}^{-1} / \%$) NOTE: If 71% abundance used for ${ }^{85} \mathrm{Rb}$ and 29% for ${ }^{87} \mathrm{Rb}$, answer $=85.58$ or 85.6 scores (1) Second mark awarded if answer CQ correct on wrong abundances and /or wrong isotopic masses.	Calculation of simple arithmetic mean of $85+87=86$ scores zero	2

Question Number	Acceptable Answers	Reject	Mark
16 (a) (i)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (Allow atoms in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in any order) Or $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$ Or $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}$ Or $\mathrm{H}_{3} \mathrm{O}^{+}$in place of H^{+} IGNORE STATE SYMBOLSEVEN IF INCORRECT		1

Question Number	Acceptable Answers	Reject	Mark
16 (a) (ii)	$2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ LHS (1) RHS (1) OR $2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}^{2-} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ LHS (1) RHS (1) IGNORE STATE SYMBOLS, EVEN IF INCORRECT $\text { IGNORE } \rightleftharpoons \text { arrows }$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{CO}_{3} \text { as a product } \\ & \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{HCO}_{3}{ }^{-} \end{aligned}$ Any other ions including spectator ions (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$) in the equation scores zero	2

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 6}$ (b) (i) | | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (b) (ii)	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 ~ (b) ~ (i i i) ~}$	$(224 \div 24000=) 0.009333 / 9.333 \times 10^{-3}(\mathrm{~mol})$ Ignore SF except 1 SF Ignore any incorrect units	$" 0.009 "$ as answer	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (b) (iv)	$\mathrm{CaCO}_{3}(\mathbf{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g} / \mathrm{aq})$ ALL FOUR state symbols must be correct for this mark	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (b) (v)	(Mass of 1 mol CaCO $3=40+12+3 \times 16)=100 \mathrm{~g}$		1
	ALLOW just "100" ALLOW any incorrect units ALLOW"100.1 g "OR just "100.1" (Reason: this uses the Periodic Table value of $A_{r}=40.1$ for Ca)		

Question Number	Acceptable Answers	Reject	Mark
16 (b) (vi)	(Mass of $\left.\mathrm{CaCO}_{3}=100 \times 0.009333\right)=0.9333$ (g) (1) IGNORE sig figs including 1 sf here NOTE: Moles of CaCO_{3} consequential on answers to (b)(iii) and (b)(v) [NOTE: if $A_{r}=40.1$ used for Ca , then the answer $=0.9339(\mathrm{~g})]$ Percentage of CaCO_{3} in the coral $\begin{equation*} =100 \times 0.9333 / 1.13=82.6 \% \tag{1} \end{equation*}$ NOTE: If mass CaCO_{3} used is 0.93 , final answer is 82.3\% [NOTE: if $A_{r}=40.1$ used for Ca , then the answers $=0.9339(\mathrm{~g})$ and 82.7%]	Final \% answer is not given to 3 sf	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (b) (vii)	(Different samples of) coral have different amounts of $\mathrm{CaCO}_{3} /$ different proportions of CaCO_{3} / different "levels" of CaCO_{3} ALLOW "calcium carbonate" for CaCO_{3} OR Only one sample of coral (was) used include any mention of CaCO_{3}	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}(\mathrm{a})$	$\left(1 s^{2} 2 s^{2}\right) 2 p^{6} 3 s^{2} 3 p^{5}$ (ignore repetition of $\left.1 s^{2} 2 s^{2}\right)$	287	$\mathbf{1}$
	ALLOW subscripts, correct use of p_{x}, p_{y} and p_{z} orbitals or normal font for electrons		

| Question |
| :--- | :--- | :--- | :--- |
| Number | Acceptable Answers

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (b) (ii)	4 shared pairs of electrons around the carbon labelled C ALL outer electrons, including lone pairs, are correctly shown on each of the four chlorine atoms labelled Cl	Ionic bonding (0)	$\mathbf{2}$
	ALLOW versions without circles IGNORE lines between the shared electrons Mark two points independently		

Question Number	Acceptable Answers	Reject	Mark
17 (b) (iii)	(Comparison of) charges: O^{2-} ions whereas Cl^{-} ions OR Statement to the effect that oxide ion has a greater (negative) charge / greater charge density than the chloride ion (so the force of) attraction between ions is stronger in MgO (than MgCl_{2}) / stronger ionic bonding in MgO (than MgCl_{2}) More energy is required to separate the ions in MgO (than MgCl_{2}) / more energy is required to break (ionic) bonds in MgO (than MgCl_{2}) / Mark the above three points independently NOTE ALTERNATIVE ANSWER WITH A MAXIMUM OF TWO MARKS: - O^{2-} (ions) smaller (than Cl^{-}ions) so (force of) attraction between ions is stronger in MgO (than MgCl_{2}) /stronger ionic bonding in MgO (than MgCl_{2}) Ignore ANY references to polarization of ions / covalent character / degree of covalency. Mark the above two points independently	Use of term chlorine and/or oxygen "atoms" or "molecules" (0) for answer overall "More bonds need to be broken" (0) for answer overall if mentions "intermolecular forces"	3

Question Number	Acceptable Answers	Reject	Mark
17 (c)	First Mark:		2
	EITHER		
	Magnesium reacts with chlorine to form only magnesium chloride/		
	magnesium reacts with chlorine to form only one product /		
	magnesium reacts with hydrochloric acid to form hydrogen (as well as magnesium chloride) /		
	magnesium reacts with hydrochloric acid to form more than one product /		
	magnesium reacts with hydrochloric acid to form a waste product		
	OR		
	Both equations $\mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2}$ and $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$		
	IGNORE state symbols, even if incorrect		
	Second Mark:		
	EITHER		
	The reaction with chlorine has an atom economy which is higher / 100%		
	ALLOW "high"		
	OR		
	Any mention of numbers comparing $100 \% \mathrm{v}$. 97.9\%		
	IGNORE any comments about yield		
	Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	$\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{3} \mathrm{H}_{6}$ ALLOW structural or displayed formulae instead of molecular formulae IGNORE any state symbols, even if incorrect		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (b) (ii)	Electrophilic addition		$\mathbf{1}$
	BOTH words needed		
	ALLOW "heterolytic" before electrophilic addition		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (b) (iii)	m bond weaker than σ (bond) / less energy needed to break m bond ALLOW bond weak(er) / m bond easy to break m-electrons / m bonds (more) accessible (to electrophilic attack) ALLOW high/higher/more electron density in m bond (so alkenes more susceptible to electrophilic attack)	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
18 (c) (i)	 both DISPLAYED structures, with ALL bonds and atoms shown major product identified or shown as product in (c)(ii) if NOT identified in (c)(i) NOTE: if only one isomer of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ is named, assume this is the required "labelling" of the major product Mark the two points independently	CH_{3} not fully displayed Incorrect name of isomer for 2nd mark	2

Question Number	Acceptable Answers	Reject	Mark
18 (c) (ii)	 (1) for carbocation (1) for arrow (1) for both arrows $1^{\text {st }}$ mark: Curly arrows must start from the bonds NOT the atoms $3^{\text {rd }}$ mark: Bromide ion must clearly have a 1^{-}charge to get this mark NOTE: The arrow from the bromide ion can start from anywhere on the Br^{-}ion (including the minus sign) or from a lone pair on Br^{-}if shown Curly arrow can go to the C or the + sign on the intermediate TE for mechanism on the isomer identified in (c)(i) or either mechanism if no major product has been identified in (c)(i) Mark the three points independently	half arrowheads Br^{d}	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (c) (iii)	Secondary carbocation (named or described or drawn) more stable (than primary) Mark the two points independently	Answers just in terms of Markownikoff's rule	$\mathbf{2}$
	(1)		
NOTE: Zero awarded if primary carbocation thought to be more stable			

Question Number	Acceptable Answers	Reject	Mark
18 (d) (i)	 Two " n 's" in the equation and a correct formula (molecular or structural) for propene on left hand side of the equation Correct repeating unit, with a methyl branch shown ALLOWCH ${ }_{3}$ fully displayed or just as CH_{3} Continuation bond at each end (with or without bracket shown in equation) Unsaturated polymer scores max Mark the three points independently	" x " instead of " n "	3

Question Number	Acceptable Answers	Reject	Mark
18 (d) (ii)	(Advantage): polypropene will decompose (naturally) ALLOW "rot" or "break down" OR polypropene will not require landfill (as it can decompose in sunlight) $O R$ no need to incinerate /burn IGNORE"good for environment" / "no pollution" (Disadvantage): poly(propene) cannot be used when exposed to (bright) sunlight / UV / outdoors OR cannot be recycled / cannot be reused Mark the two points independently	"Can be recycled" (0) for first scoring point Biodegradable for $1^{\text {st }}$ mark Answers which do not imply exposure to UV/sunlight Biodegradable for $2^{\text {nd }}$ mark	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (a) (i)	$(\mathrm{q}=250 \times(31.5-21.0) \times 4.18=) 10972.5(\mathrm{~J})$		
	IGNORE sf except 1 sf IGNORE units even if incorrect IGNORE any sign at this stage ALLOW $10.97(\mathrm{~kJ})$	$10000(\mathrm{~J})$	1

Question Number	Acceptable Answers	Reject	Mark
19 (a) (ii)	(M_{r} ethanol $)=46$ (Mass ethanol burned $=63.21-62.47=$) $0.74(\mathrm{~g})$ ALLOW 63.21 - 62.47 as alternative to 0.74 (Amount of ethanol $=0.74 \div 46=) 0.0161(\mathrm{~mol})$ NOTE: Moles of ethanol are CQ on molar mass and / or mass of ethanol burned IGNORE sf except 1 sf NOTE: Correct answer with no working /limited working scores (3) Mark the three points independently	0.02 (mol) ethanol	3

Question Number	Acceptable Answers	Reject	Mark
19 (a) (iii)	Answer (i) $\div(1000 \times$ answer (ii) $)$ NOTE: Be aware of numbers held in calculator not corresponding to what is written in answer Value and negative sign IGNOREsf except 1 sf NOTE: Answer consistent with (a)(i) and (a)(ii) with no working scores (2) E.g. $10.9725 \div(0.74 \div 46)=-682\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ ALLOW Just kJ as the units NOTE: If correct answer is given in $\mathrm{J} \mathrm{mol}^{-1}$, the units of $\mathrm{J} \mathrm{mol}^{-1}$ must be clearly given for the second mark to be awarded.	Correct answer in J instead of $\mathrm{J} \mathrm{mol}^{-1}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (b) (i)	$100 \times(1370-$ Answer to (iii) $\div 1370=$ value e.g. $100 \times(1370-682) \div 1370=50.2 \%$	Incorrect rounding of final answer (0)	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
19 (b) (ii)	Any three from: Heat loss (from the beaker)/beaker not insulated/heat loss as no lid on beaker (containing the water) /no stirring Incomplete combustion (of the alcohol)/formation of soot (on beaker) Not all of the energy from the flame is used to heat the beaker and/or the water OR Too large a distance between flame and beaker / no draught excluder Heat capacity of the beaker is neglected/beaker absorbs heat/glass absorbs heat Evaporation of the (hot) alcohol Evaporation of the (hot) water	More accurate thermometer Just "experimental /human error" Experiment carried out at a different (laboratory) temperature	3

TOTAL FOR SECTION B = 60 MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code US026194 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

